

ASD Fundamentals & MV Drive Evolution

ASD Fundamentals & MV Drive Evolution

Copyright TM GE Automation Systems March 2011

Slide #1

We drive industry

M)

MV ASD & Systems School ASD Fundamentals & MV Drive Evolution

INDUCTION MOTOR STARTING CHARACTERISTICS

Current and Torque vs. Speed

Copyright TM GE Automation Systems March 2011

Slide #2

We drive industry

M

TORQUE -PU

ASD Fundamentals & MV Drive Evolution

Induction Motor Speed-Torque Profile

ASD Fundamentals & MV Drive Evolution

AC Drives Accelerate Load

by Increasing Volts and Frequency

Μ

Operational torque must be regulated to remain in the shaded near- linear zones.

Coppyight MCGEAAtdonatition Systems Marbl 20011

Slide #4

ASD Fundamentals & MV Drive Evolution

Control of DC & AC motors

AC Inverter Drive

Rectifiers and inverter power devices change with drive type

 $\mathbf{I}_{\mathbf{f}}$

MV ASD & Systems School

ASD Fundamentals & MV Drive Evolution

Scalar vs. Vector Control

TOTAL LINE AMPS =
$$\sqrt{I_t^2 + I_f^2}$$

Scalar Control

Measures only total line amps and regulates V/Hz ratio.

Μ

Torque Vector

[tachless] can determine and control torque producing amps.

Flux Vector

can determine and control both flux and torque producing amps

ASD Fundamentals & MV Drive Evolution

Pulse-Width-Modulated [PWM] Wave Form

Voltage = The Average of the time the Voltage is on Plus the time the Voltage is Off.

The Motor tends to smooth the voltage wave

Present designs use IGBT devices to produce smooth current waves.

IGBT devices switch at rates up to 20K Hz.

EXAMPLE SIMULATED SINE WAVE PRODUCED BY 2-LEVEL PWM INVERTER

ASD Fundamentals & MV Drive Evolution

MV Drive Development Past to present

MV Drive Evolution

Copyright TM GE Automation Systems March 2011

Slide #8

We drive industry

M)

ASD Fundamentals & MV Drive Evolution

Typical AC Inverter System

AC Drive Topology:

A map-like diagram showing the elements of an AC drive and the relationships between them.

Two Basic AC Drive Topologies

- Current source drive: ENERGY STORAGE section between converter and inverter consists of an inductor.
- Voltage Source Drive: ENERGY STORAGE section between converter and inverter consists of capacitors.

TM GE Automations Systems

ASD Fundamentals & MV Drive Evolution

Time Line of Power Semiconductors & Drives

Copyright TM GE Automation Systems March 2011

M)

ASD Fundamentals & MV Drive Evolution

Comparison Areas

Comparison Areas for Drive Power Switching Devices

Gate power to turn device on & off External circuitry [firing & protection]

Switching speed, switching losses On-state forward drop and losses

Continuous current ratings Forward & reverse blocking voltage

Physical mounting & thermal characteristics

Impact

M

Number of control devices & system reliability

> System efficiency & cooling

Number of power devices, & system reliability

Packaging & system Size

TM GE Automations Systems

ASD Fundamentals & MV Drive Evolution

Comparing Gate Power of Devices

ASD Fundamentals & MV Drive Evolution

GE GTO-IMD Example

- Liquid-cooled configuration
- Many discrete parts in firing and auxiliary parts
- Snubber network also shown
- Physically quite large

ASD Fundamentals & MV Drive Evolution

GCT Gate Driver Equipment Earlier Design, Covers on

ASD Fundamentals & MV Drive Evolution

Early Standard GCT & Gate Driver Boards Earlier Design, Covers off

4.5kV-4kA

36 Electrolytic caps 21 FET Switches

Copyright TM GE Automation Systems March 2011

Slide #16

We drive industry

High Reliability GCT Device & Firing Control Latest TMEIC Design

Newly Developed GDU Model

BOTTOM LINE: fewer gate firing devices, higher reliability!

ASD Fundamentals & MV Drive Evolution

Typical IGBT & IGBT Gate Driver Circuit

IGBT 400 amp 3300 volt dual package Larger ratings have 1/package

Approximate Size: 4 inches x 4.5 inches Typical MV IGBT Dual Gate Driver Each board has 2 drivers, & fires 2 IGBT's

ASD Fundamentals & MV Drive Evolution

- IEGT = Injection Enhanced Gate Transistor
- Ratings to 4500 volts, 4000 amps
- Press pack or single sided
- Lower forward drop than IGBT, meaning higher power density, more efficiency.

ASD Fundamentals & MV Drive Evolution

IEGT Voltage Controlled Gate Driver Equipment

Gate Circuit Summary

 Control of switched power devices has come a long way:

Fewer, smaller parts

Reliability improved

 Fewer parts and strict quality control have resulted in highly reliable systems.

ASD Fundamentals & MV Drive Evolution

Power Device Losses Generally

Volts across device X Current Through Device = Power Lost in Device

Two Categories of Device Loss:

- 1. Losses During Turn-on & Turn-off
 - Minimized by faster switching
 - Equals area under volt-amp product curve

2. Losses during conduction

- Minimized by reducing device forward drop
- Equals device <u>forward volts x amps</u>

ASD Fundamentals & MV Drive Evolution

Copyright TM GE Automation Systems March 2011

ASD Fundamentals & MV Drive Evolution

Power Switch Voltage and Current Ratings

Continuous current ratings Forward & reverse blocking voltage Number of power devices, & potential system reliability

Device Rating	Design Impact	Consequence	Comments	3 Level VFD Line-Line Output & Reference Sine Wave
Higher Operating Voltage	Fewer Devices for given output	Fewer steps in output wave	Above 3300 volts, sine filter required for 3 step output	3-Level
Higher Operating Current	Fewer Devices / No paralleling needed	Power density requires good heat exchange	Highest power drives are liquid cooled	5-Level

Drive Topologies: So What?

- For drives with lots more parts, they must be very conservatively applied if reliability is to be achieved.
- Inherent design characteristics should be carefully considered when selecting.
- In-service reliability is the best indicator of real reliability.

Comparing Drives with All Topologies

- Current Source Drives
 - LCI Load Commutated Inverter
 - GTO/SGCT Current Source Induction Motor Drive
- Voltage Source Drives
 LV IGBT "Paice" Multilevel PWM
 MV IGCT PWM Diode or Active Source
 MV IGBT PWM Integrated package
 MV IEGT PWM Active or Diode Source

ASD Fundamentals & MV Drive Evolution

LCI: Load Commutated Inverter

MV ASD & Systems School

Earliest MV Drives [LCI and Cycloconverter] with thyristors

ASD Fundamentals & MV Drive Evolution

LCI –Load Commutated Inverter [Current Source]

Example: GE-Innovation Series[®] LCI

Inverter Topology	Advantages	Limitations	Practical Power Range
Current source Load-Commutated Inverter	 Low Parts Count Full Regen is inherent Rugged – ultra reliable Economical High HP 	 Requires a controlled front e High motor current THD Slow transient response Narrow motor frequency range 	nd Above 6 MW Synchronous Motors Only
SCR = Silicon Controlled Rectifier, Thyristor	N+1 SCR device redundancy possible	 Limited starting performance Poor PF at low motor speeds High harmonics unless multiple channels used; filter may be needed. 	s
			<i>Currently offered by: TM GE, ABB, Siemens</i>

Copyright TM GE Automation Systems March 2011

M)

ASD Fundamentals & MV Drive Evolution

Alternate LCI Configurations

Current Source GTO / SGCT Induction Motor Drive

Example: 1980 – 1995 GE-GTO Induction Motor Drive

Link Inductor

Inverter Topology	Advantages	Limitations	Practical Power Range
Current Source GTO or SGCT PWM Inverter GTO = Gate Turn Off Thyristor SGCT = Symmetrical Gate-Controlled	 Low power device (GTO/SGCT) parts count Low motor THD Low motor insulation stress when input isolation transformer is used 	 Requires a controlled front end – extra complexity Poor input power factor, with SCR front end Slow transient response Potential resonance between motor & caps Complex firing circuit Potential for self excitation on overhauling load PWM source filter can induce system resonance 	2 - 15 MW Primarily induction motor load
Inyristor			Currently offered by: Allen Bradley

ASD Fundamentals & MV Drive Evolution

Current Source SGCT Induction Motor Drive "Isolation" Reactor vs Isolation Transformer

Easy on Motor ground Insulation
Drive Ground faults do not affect other equipment & vice versa.

- Potentially tough on motor ground Insulation
- Drive Ground faults do affect other equipment & vice versa.
- Cheaper
- Smaller

Diode Rectifier

Converter Fed

MV ASD & Systems School

ASD Fundamentals & MV Drive Evolution

Voltage Source General Drive Arrangements

Copyright TM GE Automation Systems March 2011

ASD Fundamentals & MV Drive Evolution

PWM: Pulse Width Modulation

A method of varying voltage by changing the average "ON" time of switches between source and load.

Example Pulse-Width-Modulated [PWM] Waveform

Voltage: The Average of the time the Voltage is on Plus the time the Voltage is Off.

Current: The Motor tends to smooth the resulting current

EXAMPLE SIMULATED SINE WAVE PRODUCED BY 2-LEVEL PWM INVERTER

Copyright TM GE Automation Systems March 2011

We drive industry

ASD Fundamentals & MV Drive Evolution

Example Two-Level Voltage Source Inverter

Motor Amps

ASD Fundamentals & MV Drive Evolution

ASD Fundamentals & MV Drive Evolution

Multi-Level Medium Voltage Inverter

Circuit: SC-HB 2L (Series Conn., H-Bridge, 2-Level)

- Multi-winding transformer
- Typical output AC voltage: 3kV, 6kV, 11kV
- Series connection of Low Voltage IGBT Inverters
- Connected in 3-phase star connection
- Very clean waveform

ASD Fundamentals & MV Drive Evolution

Copyright TM GE Automation Systems March 2011

We drive industry

 \mathbf{M}

ASD Fundamentals & MV Drive Evolution

Power Cell "N+1" Redundancy

- "N+1 redundancy" originated in LCI drive design, defined as having an extra SWITCHING DEVICE per leg, with no other added parts.
- One Robicon method re-defines "N+1" as including a complete extra cell transformer secondary & SCR bypass switch:
 - Cell must be intact and control 100% functional to work
 - > Added parts work all the time and decrease drive component MTBF
- Traditionally, increased reliability comes from reducing parts count and conservative design [example: TMEIC TM-MVG has 12 year fleet MTBF]

ASD Fundamentals & MV Drive Evolution

Voltage Source MV Drives With MV Devices

Copyright TM GE Automation Systems March 2011

Slide #39

We drive industry

M)

ASD Fundamentals & MV Drive Evolution

Building Block for MV PWM Drives

- NPC: Neutral Point Clamped Configuration
- Multiple supply voltage levels allows good waveforms
- Compatible with IGBT, GCT, IEGT Devices

ASD Fundamentals & MV Drive Evolution

Progress of Inverter Circuits to High Capacity

Μ

6kV~7kV, 8MVA~120MVA

High voltage, large capacity, clean waveform

460V, 690V

ASD Fundamentals & MV Drive Evolution

Complete 3 Level Circuit, Neutral Point Clamped

ASD Fundamentals & MV Drive Evolution

IGCT PWM 3-Level Voltage Source Inverter

Example: TMEIC TMdrive XL80 IGCT Drive

Energy stored in dry or liquid filled caps

Inverter Topology	Major Advantages	Major Limitations	Practical Power Range
IGCT PWM Voltage Source Inverter Three Level	 Low power switch device count for voltage rating Fast transient response & wide motor frequency range High starting torque High power levels with largest IGCT devices Water cooling for compact package 	 High parts count firing circuit – latest design and extra high quality, conservative design to achieve reliability Top motor speed / frequency limited by device switch rate. 	10- 15 MVA per inverter [3.3- 3.8 kv] 15 – 30 MVA, multiple channel Sync or Induction Motor

ASD Fundamentals & MV Drive Evolution

IEGT PWM Voltage Source Inverter

Example: TMEIC GE 8 / 10 MW TMdrive 70

Energy stored in liquid filled caps

Inverter Topology	Major Advantages	Major Limitations	Power Range
Three Level Voltage Source IEGT PWM Inverter IEGT = Injection Enhanced Gate Transistor	 Minimum power device count – 24 for complete 8-10 mw regen system Very Compact Simple firing circuit Very high system MTBF. Low motor current THD Fast transient response & wide motor frequency range High starting torque with no significant torque pulsations Active front end for low harmonics, regeneration, unity or leading PF 	 3300 volts is not as common as 4160 volts in North American applications. 	8 to 40 MW, water cooled, one to four channel At 3300 volts Sync or Induction Motor

ASD Fundamentals & MV Drive Evolution

MV IGBT Drive with Integral Transformer

M)

TM GE Automations Systems

ASD Fundamentals & MV Drive Evolution

Example MV IGBT NPC Voltage Source Drive Details

ASD Fundamentals & MV Drive Evolution

500 ~ 2,760kVA @ 4160V (9/17 level) 400 ~ 4,378kVA @6/6.6kV (13/23 level) 660 ~ 7,297kVA @10/11kV (21/41 level)

Long Service Life

- Conservatively applied components
- Film type capacitors
- Long life cooling fans
- Modular Drive using Cell Inverter
- Air Cooled System
- 100% PF
- 2% THID

TM-MVe2 Drive

TMdrive-MVe2 can be used with standard Induction or Synchronous Motor, for general purpose applications.

>20-Year MTBF

Unique source converter design easily **meets IEEE519** harmonic current limits, *provides line regenerative braking capability* and extended power loss ride-through protection

Simpler input transformer design allows potential to locate transformer remote from drive

Multi-Level output gives Sinusoidal Voltage & Current waveforms,

We drive industry

ASD Fundamentals & MV Drive Evolution

We drive industry

TM GE Automations Systems

ASD Fundamentals & MV Drive Evolution

Example 5 level IEGT, TMdrive-XL75

Rated Single Unit Capacity: 20MVA

- -Maximum Capacity
- -Rated Output voltage
- -Line-side converter
- -Inverter
- -Cooling method
- -Dimensions
- -Redundancy (option)
- -Motor type
- Applications

- : 80MVA
- : 6.0kV
- : 36 pulse Diode rectifier
- : 5 level PWM IEGT inverter
- : Water cooled
- : W6.6xD1.6xH2.3m(20MVA)
- : Main and/or control circuit
- : Induction or Sync motor
- : Large capacity Compressor Fan, Blower or pump

What Is Now Evolving in MV Drives?

- Larger and larger driven loads require larger prime movers
- Environment factors and remote sites can favor large electric drives over turbines
- Topologies we have reviewed are tested and scaled up for large power loads

ASD Fundamentals & MV Drive Evolution

5 Level IGBT Inverter Capacity: 6kV - 8MVA

Line up of Large Capacity Inverters 6.0 – 7 kV, 5 level output

5 Level IEGT Inverter Capacity: 7kV - 30MVA up to 30MVA x 4 = 120 MVA

5 Level IEGT Inverter Capacity: 6kV - 20MVA, up to 20MVA x 4 = 80 MVA

Copyright TM GE Automation Systems March 2011

Slide #51

ASD Fundamentals & MV Drive Evolution

Parallel Connection for Higher Capacity

(d) 4 Banks, Dual windings motor x 2 parallel bridge

Copyright TM GE Automation Systems March 2011

Slide #52

We drive industry

TM GE Automations Systems

ASD Fundamentals & MV Drive Evolution

Copyright TM GE Automation Systems March 2011

Slide #53

We drive industry

ASD Fundamentals & MV Drive Evolution

Questions?

We drive industry

 (M)