PROFESSIONAL
DEVELOPMENT
SEMINAR
SERIES

WELCOME TO GPS 160

Generator Provisioning & Installation

Engineering Trivia

The volt is a fundamental unit of electrical measurement named after an early physicist.

What was this physicist's name?

PROFESSIONAL
DEVELOPMENT
SEMINAR
SERIES

Generator

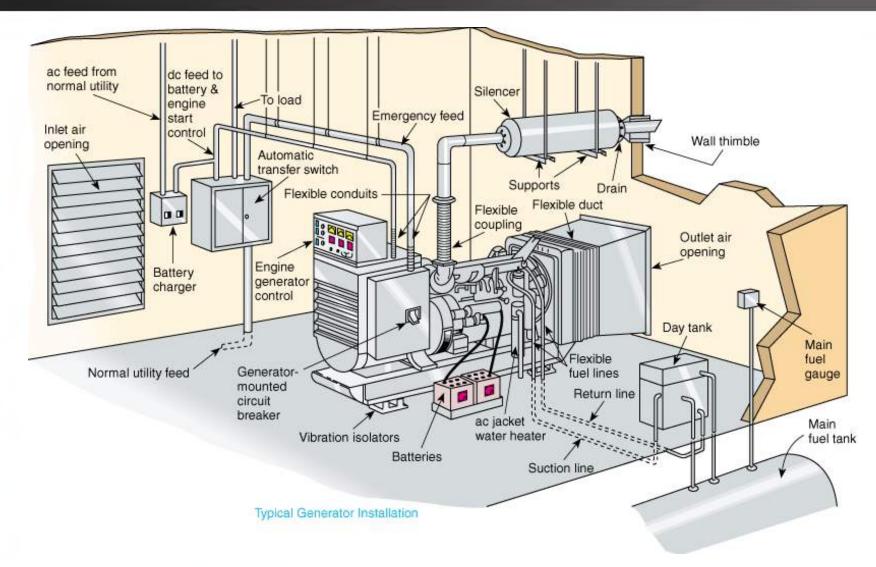
Provisioning & Installation

Location – Outdoors

- Access and Egress
 - Exit and entrance points to the site
 - Five feet from combustible walls
 - Overhead interference points
- Electrical interconnect
- Fuel source location
- Exhaust discharge location
- Air flow
- Security and flooding
- Sound

Location – Roof Top

- Structural support
- Vibration isolation
- Crane requirements
- Fuel supply


Location – Indoors

- Air flow
- Exhaust
- Heat
- Fuel
- Fire
- Sound
- Secured area
- Access & egress

Indoor Location

Indoor Location – System Design

- Separate room (level 1)
- Room with two-hour fire rating
- Fire protection system
- Fire risk evaluation
- Battery-powered emergency lighting
- Minimum access spacing 36" (NFPA 37)
 - NEC working space requirements may require 48"

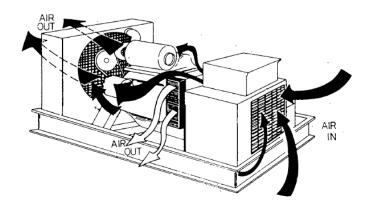
Airflow – Outdoor Locations

- Unrestricted air flow
 - Discharging up versus out
 - Recirculation
 - Prevailing winds
 - Clean, clear area

Airflow – Enclosures

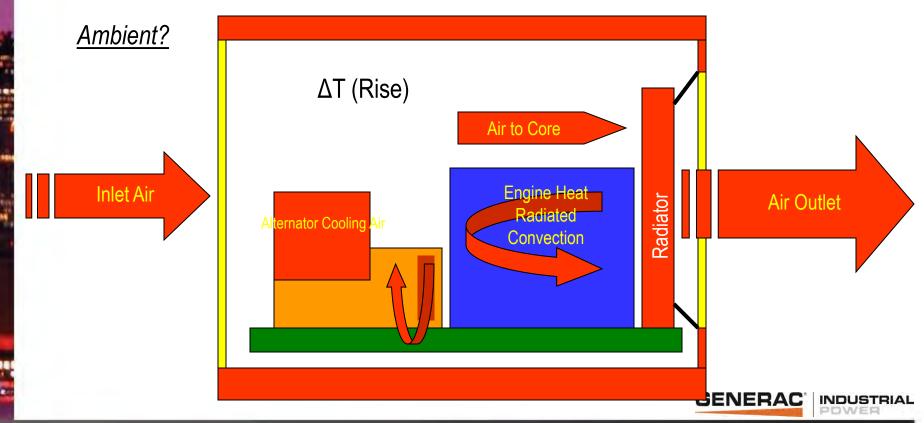
Weather

- UL2200 tested with unit
- Materials
 - Steel (typical)
 - Aluminum (optional)
 - Stainless Steel (rare special)



Airflow – Indoor Locations

- Air inlet
 - Opening 1.5 to 2 times radiator area (attached radiator)
 - Size for room temperature rise (remote radiator)
 - ◆ CFM \cong (BTU/Hr rejected) / desired \triangle Temp + combustion air


- Air outlet
 - Match radiator flange or larger
 - Compensate for louver or screens
 - Minimal duct work (straight & short)
 - Watch for recirculation

Airflow – Indoor Locations

What is ambient temperature?

Is it measured inside or outside the room?

Exhaust – System Design

- Flex connection
- Condensate traps
- Thermal expansion
- Exhaust blankets
- Thimble
- Acceptable back pressure
- Silencer
 - Industrial, Critical, Hospital, etc.
 - Key is to specify desired sound level for the system

Exhaust – Discharge

- Exhaust direction
- Air handler intake

Exhaust stacks when necessary

Exhaust – Location in Enclosures

On top

- Aesthetics & rust from muffler
- In discharge hoods
 - Limited to 400 kW
- Inside enclosure
 - Must be thermally wrapped

Cooling System – Block Heaters

Block heater (100°F min)

- Convection & circulating types used
- Wattage based on engine size
- Required on diesels

Spark-ignited engines

- Crank speed determines start-ability
 - Battery heater
 - Synthetic oil
- Block heater may not be the best choice for small (< 100 kW) spark-ignited engines
 - Operation cost
 - Maintenance cost

Cooling System – Radiators

Engine-mounted

- Most common and reliable
- Usually designed for 50° C

City-water cooling

Limited acceptance

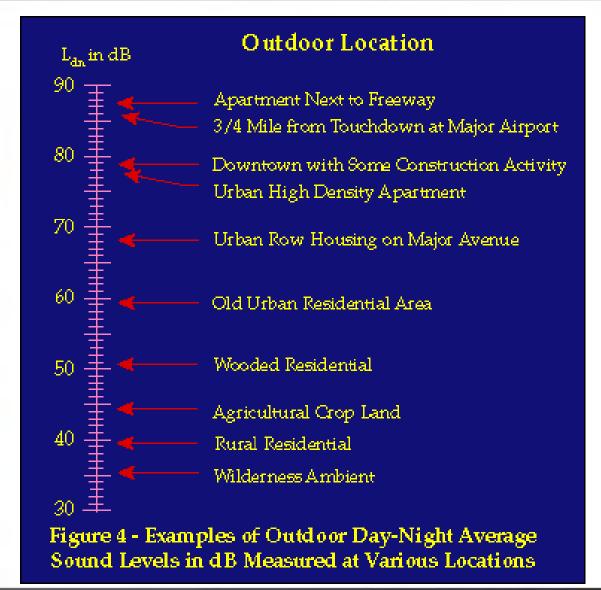
Remote radiator

- Heat exchangers
- Circulating pumps
- Electric-driven fans
- Complexity and reliability concerns

Cooling System – Remote-Radiator Considerations

Basic design considerations

- Engine constraints
 - Pressure and flow restriction on engine water pump
 - Pressure constraints on engine seals
- Piping layout
 - Isolation valves (monitoring)
 - Burping the system
 - Air entrainment
- Powering fans and circulation pumps
 - Powered by generator (emergency distribution panel)
 - Breakers (monitoring)
 - Direct connection (no motor starters)


Cooling System – Remote-Radiator Considerations

Other design considerations

- Charge Air Cooling (CAC)
 - Air-to-air
 - Separate water jacket
 - Temperature requirements
 - EPA emission characteristics
- Other cooling
 - Fuel coolers
 - Oil coolers

Sound – Levels

Sound – Enclosures

Sound Attenuated

- Weather housing (-5 dBa)
- Standard sound housing (-15 dBa)
- Level 2 sound housing (-20 dBa)
- Custom enclosure designs (-25 dBa)

Expensive and not factory supported (testing)

Sound – Design Concepts

Enclosure options

Become costly at low dBa levels

Distance

Double distance is a 6 dBa reduction

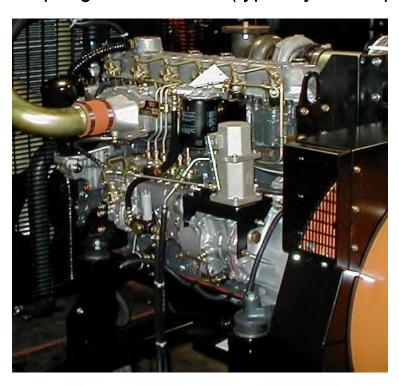
Walls

- Direct sound up
- Provides other benefits
 - Enhanced security
 - Added wind protection

Mounting – Concrete Slab

Concrete slab

- Required to secure and support
- Extend beyond profile of generator (18" minimum)
- Designed to support wet weight
- Wire or re-bar reinforced as required
- Double check stub-up location



Mounting – Isolators

External Isolators

- Pad or Spring
- Most generators ≥ 500 kW use spring isolators
- Most generators ≤ 400 kW internally isolated
- Avoid spring on ≤ 400 kW (typically not required)

Diesel Fuel – Engine Options

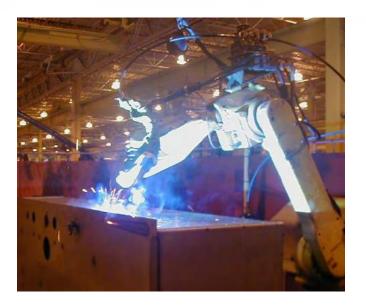
Typical Options

- Secondary filter/water separator
- Secondary filter with heater
- Fuel data from engine ECM (EPA tier 3 engines)

- Duplex secondary filters
- Mechanical fuel pressure gauges

Diesel Fuel – Tanks

Typical tanks


- Secondary containment sub-base tanks (8-hour, 12-hour, 24-hour)
- Main Storage tanks (24 hours and up)
- Day Tank (2-hour, 4-hour)

Special requirement tanks

- Sub-base day tank (8 hours with transfer pumps)
- UL2085 fire rated (code-required in select markets)

Diesel Fuel – Standard Tanks

- Sub-base configuration (very common)
- Secondary containment (double wall)
- Various heights and capacities
- UL 142 listed
- Stub-up at rear of the tank
- Various connections

Diesel Fuel – Special Tanks

Local code special requirements

- Fill–spill box
- High level contact
- Remote fill-alarm panel
- Special fill connection
- Auto fill shutoff
- Normal vent elevation
- Tank elevation

Diesel Fuel – System Design

- Is the system fail-safe?
 - Return lines or pumps (day tanks)
 - Isolation valves and solenoids
 - Piping is protected
 - Safe filling system
 - Vents installed
- Is the fuel source reliable?
 - Other users
 - Fuel maintenance program

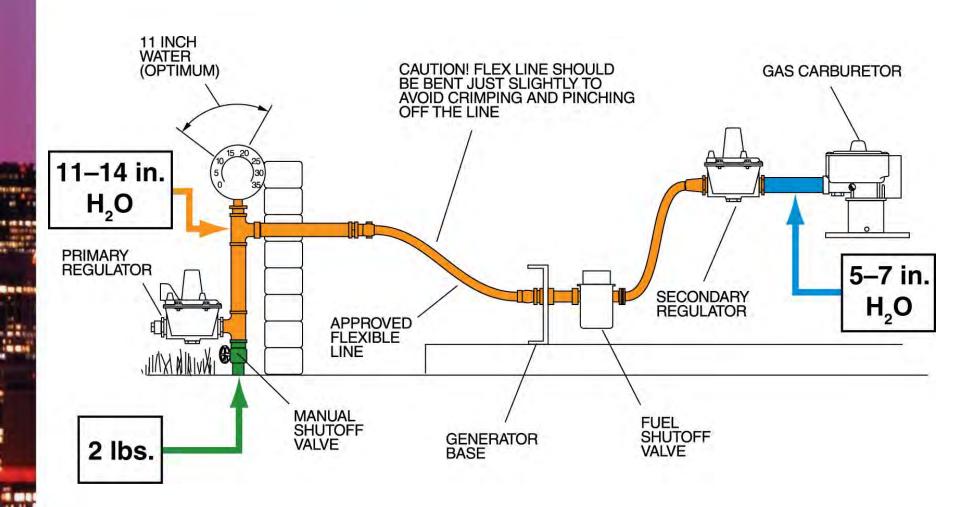
Diesel Fuel – System Design

Day tank with main storage tank

- Main tank lower elevation
 - Day-tank pump
 - Gravity return
 - Engine return to main tank

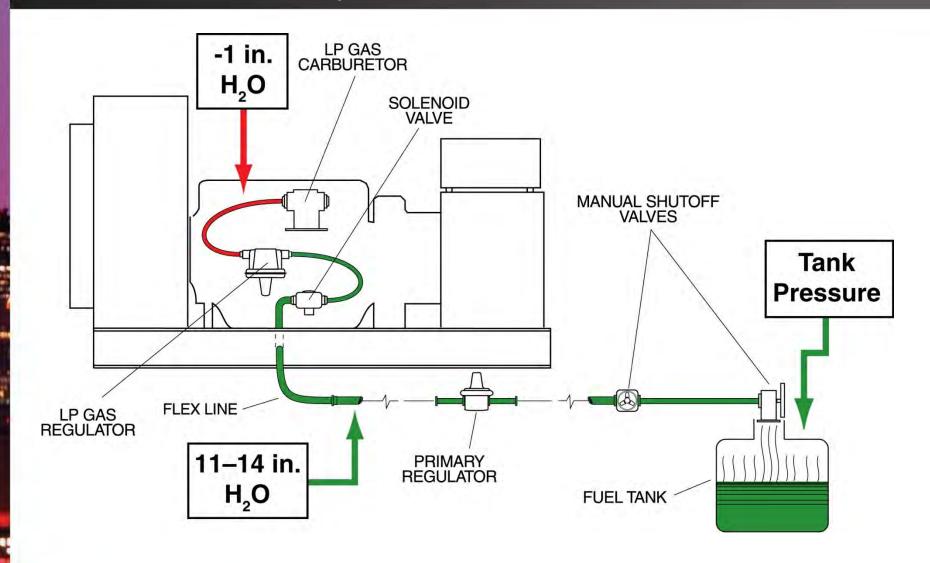
- Isolation solenoid (bypass capability, NFPA110 5.6.3.2.1)
- Return pump (sized larger than inlet flow)
- Fuel cooler may be needed

Gaseous Fuel Systems

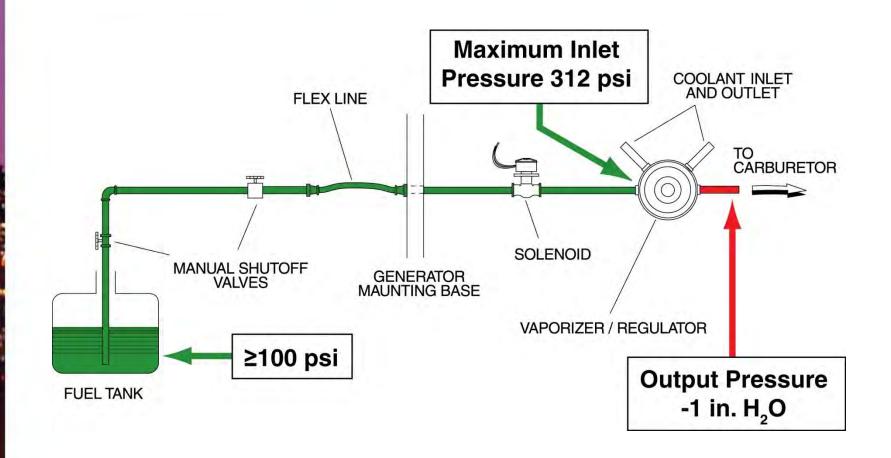

- Natural Gas
- LP Vapor
- LP Liquid
- Dual Fuel (LP or Natural Gas)
- Bi-Fuel™ (Diesel and Natural Gas)

Fuel Systems – Natural Gas

Gaseous Fuel Systems


Gas pressure is critical

- Consult manufacturer data sheets
 - ◆ 5" to 14" H₂O typical for units less than 60 kW
 - ◆ 11" to 14" H₂O typical for units 60 to 300 kW
 - 2 psi typical for units larger than 300 kW


Verify gas service capacity

Adequate piping size is critical

Fuel Systems – LP Vapor

Fuel Systems – LP Liquid

Gaseous Fuel Systems

- Adequate service or tank size
 - Consider other gas loads
 - Consider ambient temperatures
- Adequate pipe sizing
- Primary pressure regulator at unit
- Isolation valves (secured)
- Flexible fuel lines (approved)

Oil Lubrication System

Typical Options

- Oil heaters
- Oil make-up systems (consult manufacturer recommendations on tier 3 engines)
- Oil temperature indication and alarms (may be standard on tier 3 engines)

Non-typical requirements

- Pre-lube systems
- Oil-level indication and alarms

Starting System – Battery

Lead acid (generally maintainable)

- Cost effective and excellent cranking amps
- Highly reliable when on maintenance cycle
- Familiar to end-users
 - Fast replacements
 - Jumping and boost charging

NiCad

- Expensive (initial cost & disposal)
- More sensitive charging requirements
- Poor end-user awareness

Typical options

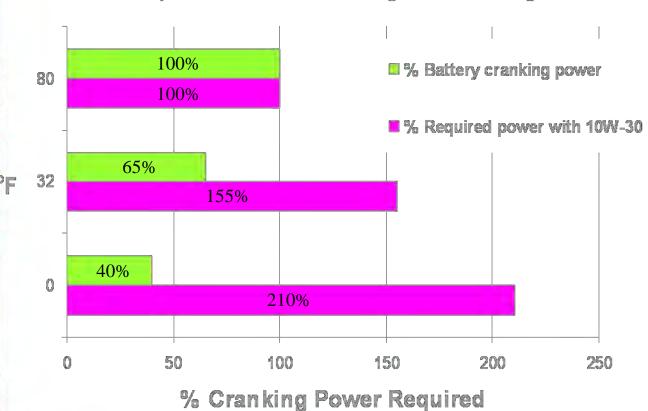
- Oversized batteries
- Dry batteries (storage applications)

Starting System – Charging

Float-equalized charger

- Maintains battery charge
- Equalizes cells for maximum cranking amps
- Usually 10 amps

Engine-charging alternator


- Fast battery recovery after cranking
- Adds reliability to system (failed charger)

Starting System – Battery Heater

Battery blanket option

Temperature Effect on Engine Cranking

Speed Control – Governor System

Electronic (industry norm)

- Isochronous (maintains 60 hertz operation)
- Typically integrated into generator or engine controller
- Older designs may use an external controller
- +/- 0.25% frequency regulation

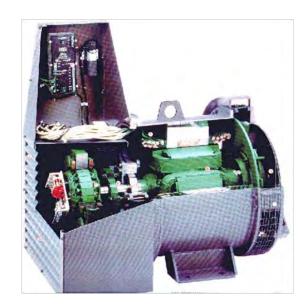
Mechanical

- Droop (speed decreases when load increases)
- Historically common in small diesels
- +/- 5% frequency regulation

Alternator Accessories

Strip heaters

Extends life by minimizing moisture


Tropical coating

- Epoxy "green" over-coating
- Additional moisture barrier

• PMG (permanent magnetic generator)

- Standard in larger kW units
- Supports breaker coordination

Circuit Breakers

Standard

- Thermal magnetic
- Single breaker

Options

- Multiple breakers
- Shunt trip
- Auxiliary contacts
- Electronic trip
- Ground fault

Coordination

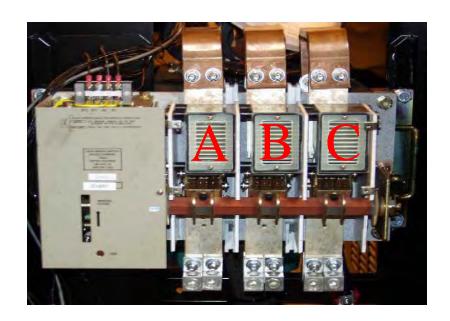
- Has the genset arrival at the site been scheduled?
- Does the transport company have a contact?
- Has rigging been arranged?
- Identify location of loose parts
- Larger units require exhaust mounting

Checking for Shipping Damage

Installation Safety

Keep system disabled prior to startup

- Batteries disconnected
- Generator in OFF position
- Breaker open
- ATS in manual



Power Wiring – Phase Rotation

Phase rotation

- Confirm generator and facility rotation at ATS (startup check)
- Connections should include enough cable to change rotation

Power Wiring – Terminations

Conduits

- Cluster conduits under breaker
- Keep ABC and N conductors grouped together
- Plan for regrouping phases in conduit layout

Terminations

- Cable termination determined by ATS and breaker lugs
- 75-degree cable requirements (don't use 90-degree cable)
- Support lugs when tightening (broken ATS and breakers)

Note: Alternator leads are 150-degree wire

Power Wiring – Load Bank Provisions

- Is load bank testing required (ref NFPA 110)?
- Periodic load bank testing is recommended
- Wiring provisions???

Power Wiring – Grounding and Bonding

- Neutral should be bonded for grounded systems
- Three-pole ATS, the neutral is bonded at the service
- Four-pole ATS, the neutral is bonded at the generator
- Generator requires a grounding conductor
- Grounding electrode (rod) does not replace grounding conductor

Auxiliary Power Wiring

- Battery charger and block heater
 - 120/240 VAC
 - May want on separate circuits
 - Spark-ignited generators in summer (\$ savings)
 - Block heater failures maintain battery charger

Auxiliary Power Wiring

- Other 120/240 accessories to be powered (options)
 - Battery blanket heaters
 - Alternator strip heater
 - Motor-operated louvers
 - Load centers
 - Convenience outlets
 - Typically OEM wired

Controllers

- Usually standard component with options
 - Digital controller meeting NFPA 110, level 1
 - Governor and regulator integration
 - Paralleling capability

Control Accessories

- Annunciator
- Alarm horns

- Communication capability (modem, Ethernet, etc.)
- Additional I/O capability
- Custom logic/functionality

Control Wiring

General

- Control wiring in separate conduit
- Pull spare control wires
- Wiring requirements vary with control type
- Consult wiring diagrams and owner manuals

GENERATOR COMMON ALARM ALARM ALARM STOP

Typical control wiring

- 2-wire start (2 wires, ATS to generator)
- ATS position indication (3 wires, ATS to generator)
- Communications (2 wire shielded, various)
- Remote annunciator (4 wire shielded from generator)

PROFESSIONAL
DEVELOPMENT
SEMINAR
SERIES

Questions?